M1230-08-51

Spray Drying Processability of Methacrylic acid copolymers in Amorphous Dispersions: A QbD Approach

Cooper, Sanjay Konagurthu

CONTACT INFORMATION: <u>pranjal.taskar@thermofisher.com</u>, <u>sanjay.konagurthu@thermofisher.com</u>

PURPOSE

- Methacrylic acid copolymers, e.g. Eudragit® L 100, Eudragit® S 100 and Eudragit® L 100-55 are enteric polymers that demonstrate promise for formulating **amorphous solid dispersions (ASD**) of low solubility molecules, attributed to their high glass transition temperature (Tg) enabling high drug loading and improved physical stability.
- Using spray drying as a process to formulate ASD of methacrylic acid copolymers is challenging due to issues such as **string formation** resulting in **low** yields and excessive chamber buildup.
- In this work, a **QbD** approach was utilized to establish a spray drying process space using Eudragit® L 100 as our model polymer. Critical processing parameters affecting the spray drying process were identified in order to determine optimal operating conditions.

METHODS

- A **22-run** custom design was generated within the limits depicted in Table 1 using statistical software JMP®14 by SAS with an I-**Optimality** criterion.
- A solvent system of **90:10 acetone: water** was used to prepare the spray solutions at the predetermined solids % (w/w)
- The solutions were sprayed on a **BÜCHI B-290** mini spray dryer at the stated spray conditions; each a batch size of about 300-350 g.
- The data (responses) generated from the experimental runs was modelled to a stepwise regression fit with a stopping rule of pvalue threshold.

Dependent variab			
Morphology (% Strings)	Residual Solvent (% LOD)		
 Estimated from the unit area coverage of the strings to regular spray dried dispersion (SDD) using captured SEM images of the individual runs (n=3) FEI Quanta 200 Scanning Electron Microscope 	 A small amount of the wet SDD was analyzed by the standard drying program Sartorius MA37 Moisture Analyzer 		

Pranjal Taskar, Xiangming Wu, Brian Greco, Sabrina Zojwala, Vance

Pharma Services Group, Thermo Fisher Scientific

Table 1. The limits for independent variables (process factors) generating the 22-run design

	Independent variables	Limits	
	Spray rate	10-30 ml/min	
r	Atomization Pressure	1-3 bar	
	Inlet temperature	70-180°C	
S	Solids %	3-7 % (w/w)	

es (responses)

% Yield

- Collected SDD was weighed to calculate a wet
- SDD was dried in a convection tray dryer at
- 40°C for 24 hours and weighed to obtain % Yield

Particle size (µm)

- D90 (µm) of the dried samples was plotted as a function of the independent variables
- Malvern Mastersizer 3000 using a Aero S dry powder disperser

0.9 sol rate Tak Table variak
Fit g (Resp
Particl Prese Stri
Los: Dry
Ter %) ter (w/ ter line on soli Fig
140 120 100 100 80

Figure 2. Effect of inlet temperature (°C) and % w/w solids on % Yield

Inc
ter
sig
res
ca

RESULTS

Table 2 summarizes responses modeled to quadratic regression, ordered as a function of "goodness of fit"

The particle size data demonstrated a good fit with R² value of 0.954; significantly affected by the spray rate, inlet temperature, % lids and the secondary interaction terms of % solids with spray e, atomization pressure and inlet temperature as depicted in ble 3.

2. Summary of response bles and goodness of fit

roup	Summary of Fit		Analysis	
onse)	R ²	R ² Adjusted	Variance	
e size	0.954	0.917	< 0.0001	
nce of ngs	0.807	0.73	0.0001	
eld	0.685	0.633	< 0.0001	
s on ing	0.271	0.194	0.0496	

ms significantly affecting vield are the inlet nperature and % solids (w); at any inlet nperature, there is a ear decline in the % yield increasing the total % ids (w/w) observed in jure 2.

creasing the inlet mperature demonstrated a gnificant decline in the sidual solvent (% LOD) as an be observed in Figure 3.

• A significant increase in presence of strings was observed on increasing % solids.

Figure 1 depicts the combined effect of flow rate and % solids; increasing the spray rate at a higher % solids demonstrated a marked decline in the strings generated

Figure 1. Effect of spray rate (ml/min) and solids content (% w/w) on the morphology of SDD

Table 3. Summary of individual independent variables and their interactions terms

Dependent variables	Independent variables	P-value			
% Yield	Inlet temperature	0.0282			
	% Solids	< 0.0001			
%LOD	Inlet temperature	0.0155			
	Spray rate	< 0.0001			
	Inlet temperature	< 0.0001			
	% Solids	0.0197			
Particle size	% Solids* Spray rate	< 0.0001			
	% Solids* Atomization pressure	0.0107			
	% Solids* Inlet temperature	< 0.0001			
% Strings	% Solids	< 0.0001			

RESULTS

Figure 3. Marginal model plot depicting the marginal effects of independent variables spray rate (ml/min), atomization pressure (bar), inlet temperature (°C) and solids % (w/w) on responses, % yield, % loss on drying (LOD), particle size distribution (PSD), presence of strings (%)

Figure 4 (A, B) shows SEM images of the SDD, depicting differences between the stringy and spherical/collapsed spherical morphology as a result of changing processing parameters

Figure 4. SEM images (1500 X magnification) of 100% EUDRAGIT[®] L 100 SDD, sprayed from 90:10 Acetone: Water at (A) 7% (w/w) total solids, inlet temperature of 102°C, atomization pressure 1 bar and spray rate 10 ml/min and (B) 3% (w/w) total solids, inlet temperature of 137°C, atomization pressure 1 bar, and spray rate 22.1 ml/min

CONCLUSIONS

- This study enabled identification of the desired process space for <u>spray drying methacrylic acid copolymers</u> such as Eudragit® L 100.
- Critical processing parameters were identified and a parametric study was conducted.
- Findings indicate that maintaining a lower solids content and lower inlet/outlet temperatures minimizes stringiness.
- For achieving high solids content, it was determined that colder inlet/outlet temperatures and higher spray rates improve process efficiency.
- It was determined that atomization pressure did not demonstrate a significant effect on the processability.

patheon

by Thermo Fisher Scientific